Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.04 Материалов	ведение и технологии перспективных
	материалов
наименование дисципли	ны (модуля) в соответствии с учебным планом
Направление подготовки / сп	ециальность
22.04.01 Материал	поведение и технологии материалов
Направленность (профиль)	
22.04.01.04 Синтез и з	литье новых металлических материалов
Форма обучения	очная
Гол набора	2021

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
канд.техн.на	лук, доцент, Зеер Гаалина Михайловна
	лопжность инициалы фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Сформировать у студентов представления об основных тенденциях и направлениях развития технологий современных и перспективных материалов, применяемых в производстве.

1.2 Задачи изучения дисциплины

Код и наименование индикатора

смежных областях

- изучить физико-химических процессы, протекающих в современных и перспективных материалах в процессе получения конечной продукции;
- изучить основные тенденций развития технологий перспективных материалов, закономерностей формирования и управления структурой и свойствами материалов при механическом, термическом и других видах воздействия на материал;
- сделать будущего специалиста компетентным в выборе требуемых технологий современных и перспективных материалов при производстве машиностроительных материалов с определенными эксплуатационными свойствами

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Запланированные результаты обучения по дисциплине

достижения компетенции	
ОПК-1: Способен решать про	изводственные и (или) исследовательские задачи,
на основе фундаментальных з	внаний в области материаловедения и технологии
материалов	
ОПК-1: Способен решать	основные типы конструкционных и функциональныз
производственные и (или)	неорганических и органических (полимерных и
исследовательские задачи, на	углеродных) материалов; композитных, гибридных,
основе фундаментальных	сверхтвердых материалов; интеллектуальных и
знаний в области	наноматериалов.
материаловедения и	осуществлять разработку пректных
технологии материалов	материаловедческих и технологических решений,
	обеспечение чистоты новых решений; выполнять
	комплексные технологические и проектные расчеты
	с использованием программных продуктов;
	владеть созданием и конструированием
	новыхконструкционных материалов, методами
	контроля их структуры и свойств с использованием
	компьютерных и информационных технологий
ОПК-5: Способен оценивать р	езультаты научно-технических разработок,

научных исследований и обосновывать собственный выбор, систематизируя и обобщая достижения в области материаловедения и технологии материалов,

ОПК-5: Способен оценивать результаты научно-технических разработок,	Результаты научно-технических разработок, научных исследований. Обосновывать собственный выбор, систематизируя и
научных исследований и обосновывать собственный выбор, систематизируя и обобщая достижения в области материаловедения и технологии материалов, смежных областях	обобщая достижения в области материаловедения и технологии материалов, смежных областях навыками поиска оптимальных решений при создании новой продукции; организации работ по совершенствованию, модернизации, унификации изделий.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1 (36)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
Самостоятельная работа обучающихся:	2 (72)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п	Молупи, темы (разделы) лисциплины		Занятия лекционного типа		Занятия семи Семинары и/или Практические занятия		инарского типа Пабораторные работы и/или Практикумы		ятельная ак. час.
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1.		1	i	1	1	<u> </u>	1		
	1. Введение. Содержание и цель курса. Классификация современных и перспективных конструкционных и функциональных материалов.	2							
	2. Классификация современных и перспективных конструкционных и функциональных материалов.			2					
	3.							10	
	4. Условия образования аморфной структуры. Способы получения материалов в аморфном состоянии. Механические, химические, электрические и магнитные свойства аморфных металлических сплавов. Области применения аморфных сплавов	3							

5. Условия образования аморфной структуры. Способы получения материалов в аморфном состоянии. Механические, химические, электрические и магнитные свойства аморфных металлических сплавов. Области применения аморфных сплавов		3			
6.				11	
7. Особенности структуры нанокристаллических материалов; кластеры, карбины, фуллерены, углеродные нанотрубки. Методы получения порошковых наночастиц. Химические и физико-механические свойства объемных наноструктурных материалов. Области применения наноматериалов.	3				
8. Структура нанокристаллических материалов: кластеры, карбины, фуллерены, углеродные нанотрубки. Методы получения порошковых наночастиц, технологии получения наноматериалов. Химические и физико-механические свойства объемных наноструктурных материалов. Области применения наноматериалов.		3			
9.				11	
10. Механизм сверхпроводимости, сверхпроводящие материалы и технологии их производства. Перспективы использования сверхпроводящих материалов. Модели суперионной проводимости. Применение суперионных проводников в химических источниках тока. Функциональные элементы на основе твердых электролитов.	2				

11. Сверхпроводящие материалы и технологии их производства, перспективы использования. Модели суперионной проводимости. Применение суперионных проводников в химических источниках тока, функциональные элементы на основе твердых электролитов.		2			
12.				10	
13. Механизм эффекта памяти формы. Технология производства и свойства сплавов с эффектом памяти формы, области применения.	2				
14. Эффект памяти формы. Технология производства, свойства и применение свойства сплавов с эффектом памяти формы.		2			
15.				10	
16. Способы получения порошков. Технологические, химические и физические свойства порошков. Основные марки металлических порошков. Современные технолигии получения материалов методами порошковой металлургии.	3				
17. Материалы, полученные методами порошковой металлургии: конструкционные материалы, фильтрующие пористые материалы; антифрикционные и фрикционные материалы.		3			
18.				10	

19. Типы структур и исходных упрочняющих элементов композиционных материалов. Классификация композиционных материалов по геометрии, расположению и природе компонентов. Композиционные материалы со сложной структурой металл/керамика.	3				
20. Способы получения композиционных материалов. Свойства и области применения дисперсноупрочненных и волокнистых композиционных материалов, керметов и псевдосплавов.		3			
21.				10	
Всего	18	18		72	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Дмитренко В. П., Мануйлова Н. Б. Материаловедение в машиностроении: учебное пособие(Москва: ООО "Научно-издательский центр ИНФРА-М").
- 2. Адаскин А. М., Красновский А. Н. Материаловедение и технология металлических, неметаллических и композиционных материалов: Учебное пособие(Москва: Издательство "ФОРУМ").
- 3. Шиманский А. Ф., Подкопаев О. И., Кравцова Е. Д., Подшибякина Е. Ю. Материаловедение и технологии современных и перспективных материалов: учеб.-метод. пособие для практич. занятий [для студентов напр.150100.68 «Материаловедение и технологии материалов»] (Красноярск: СФУ).
- 4. Шуваева Е. А. Материаловедение. Неметаллические и композиционные материалы. Курс лекций(Москва: МИСИС).
- 5. Дмитренко В. П., Мануйлова Н. Б. Материаловедение в машиностроении: Учебное пособие(Москва: ООО "Научно-издательский центр ИНФРА-М").
- 6. Моргунов Р. Б., Коплак О. В., Дмитриев А. И. ІТ-наноинженерия и современное материаловедение (Материаловедение): учебнометодическое пособие [электронный курс](Москва: ЭБС "Университетская библиотека онлайн").

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Лицензионное программное обеспечение: Microsoft Office

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. 1 Сайт о нанотехнологиях в России (http://www.nanoware.ru)
- 2. 2 Интернет-журнал о нанотехнологиях(http://www.nanodigest.ru)
- 3. З Нанотехнологии: сегодня и будущее (http://www.nanoevolution.ru /cat/nanomedicina)
- 4. 4 Научная библиотека СФУ. Режим доступа: http://catalog.sfu-kras.ru/cgibin/ irbis64r_14/cgibis_64exe#page-title
- 5. 5 НИЦ «Инфра-М» ЭБС. Режим доступа: http://www.znanium.com
- 6. 6 Электронная библиотека. Режим доступа: http://all-ebooks.com/
- 7. 7 Электронная библиотека СФУ Режим доступа: http://bik.sfu-kras.ru/
- 8. 8 НЭБ Научная электронная библиотека Режим доступа:eLIBRARY.RU

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Проведение занятий лекционного типа требует оснащение лекционного зала мультимедийным оборудованием (проектор, интерактивная доска).

Поведение лабораторных работ требует следующего оснащения:

- компьютерный класс с выходом в интернет;
- учебная лаборатория «Электронная микроскопия и рентгенография».